

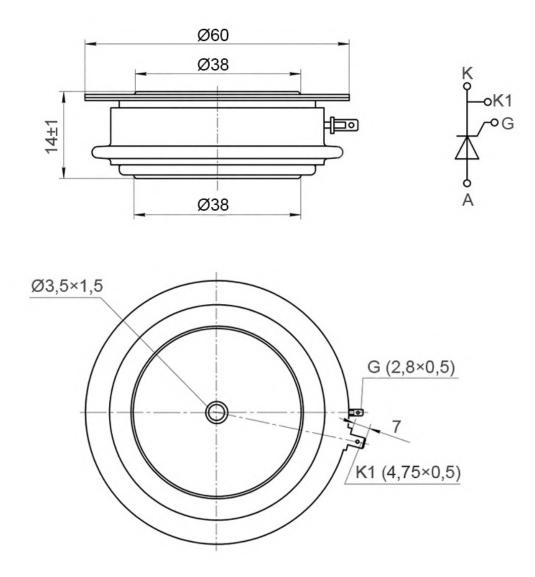
Тиристор быстродействующий импульсный ТБИ343-400-15

Средний прямой ток			I _{TAV}	400 A			
Повторяющееся импульсное напряжение в закрытом состоянии			U _{DRM}	1000 - 1500 B			
Повторяющееся импульсное обратное напряжение			U_{RRM}				
Время выключения			t _q	10.0, 12.5, 16.0, 20.0 мкс			
U _{DRM} , U _{RRM} , B 1000 1100		1200	1300	1400	1500		
Класс по напряжению	10	11	12	13	14	15	
T _j , °C	-60 ÷ 125						

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

Обозначение и наименование параметра		Ед. изм.	Значение	Условия измерения		
Парамет	ры в проводящем состоянии					
I _{TAV}	Средний ток в открытом состоянии	А	400 487 719	T_c =94 °C; двухстороннее охлаждение T_c =85 °C; двухстороннее охлаждение; T_c =55 °C; двухстороннее охлаждение; 18 эл. град. синус; 50 Гц		
I _{TRMS}	Действующий ток в открытом состоянии	А	628	T _c =94 °C; двухстороннее охлаждение; 180 эл. град. синус; 50 Гц		
l	Ударный ток в открытом состоянии	кА	9.5 11.0	$T_{j}=T_{jmax}$ 180 эл. град. синус; $t_{p}=10$ мс; единичный импульс; $U_{D}=U_{R}=0$ В; Импульс управления: $I_{G}=I_{FGM}$; $U_{G}=20$ В; $t_{GP}=50$ мкс; $di_{G}/dt=1$ А/ мкс		
I _{TSM}	Ударный ток в открытом состояний	NA	10.0 11.5	$T_{j}=T_{jmax}$ 180 эл. град. синус; $t_{p}=8.3$ мс; единичный импульс; $U_{D}=U_{R}=0$ В; Импульс управления: $I_{G}=I_{FGM}$; $U_{G}=20$ В; $t_{Gp}=50$ мкс; $t_{Gg}/t=1$ А/ мкс		
l ² t	2	A ² c·10 ³	450 600	$T_{j}=T_{jmax}$ 180 эл. град. синус; $t_{p}=10$ мс; единичный импульс; $U_{D}=U_{R}=0$ В; Импульс управления: $I_{G}=I_{FGM}$; $U_{G}=20$ В; $t_{GP}=50$ мкс; $di_{G}/dt=1$ А/ мкс		
	Защитный фактор	A C 10	410 540	180 эл. град. синус; t _p =8.3 мс; единичный импульс; U _D =U _R =0 B; Импульс Управления: I _G =I _{FGM} ; U _G =20 B; t _{GP} =50 мкс; di _G /dt=1 A/ мкс		

Блокируюц	цие параметры			
U _{DRM} , U _{RRM}	Повторяющееся импульсное обратное напряжение и повторяющееся импульсное напряжение в закрытом состоянии	В	1000 - 1500	$T_{j\text{min}} < T_{j} < T_{j\text{max}};$ 180 эл. град. синус; 50 Гц; управление разомкнуто
U _{DSM} , U _{RSM}	Неповторяющееся импульсное обратное напряжение и неповторяющееся импульсное напряжение в закрытом состоянии	В	1100 - 1600	$T_{j\text{min}} < T_{j} < T_{j\text{max}};$ 180 эл. град. синус; единичный импульс; управление разомкнуто
U _D , U _R	Постоянное обратное и постоянное прямое напряжение	В	0.6 [·] U _{DRM} 0.6 [·] U _{RRM}	T_{j} = T_{jmax} ; управление разомкнуто
Параметры	управления			,
I _{FGM}	Максимальный прямой ток управления	А	8	T-T
U_{RGM}	Максимальное обратное напряжение управления	В	5	− T _j =T _{j max}
P_{G}	Максимальная рассеиваемая мощность по управлению	Вт	8	T _j =T _{j max} для постоянного тока управления
Параметры	переключения	'		
(di _T /dt) _{crit}	Критическая скорость нарастания тока в открытом состоянии (f=1 Hz)	А/мкс	2000	T_{j} = T_{jmax} ; U_{D} = 0.67 : U_{DRM} ; I_{TM} = 3700 A; Импульс управления: I_{G} = I_{FGM} ; U_{G} = 20 B; t_{GP} = 50 мкс; di_{G} / dt = 2 A/мкс
Тепловые п	параметры			
T _{stg}	Температура хранения	°C	-60+50	
T _j	Температура р-п перехода	°C	-60+125	
Механичес	кие параметры			
F	Монтажное усилие	кН	14.0 - 16.0	
a	Ускорение	M/c ²	50	В зажатом состоянии

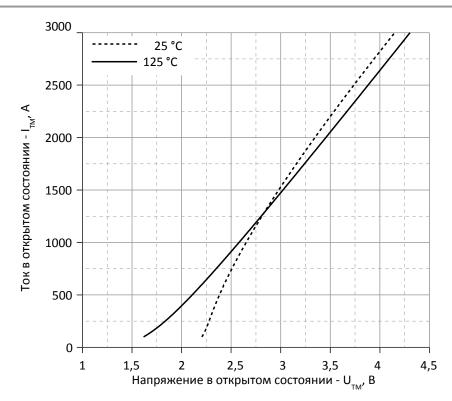

ХАРАКТЕРИСТИКИ

Обозначение и наименование характеристики		Ед. изм.	Значение	Условия измерения	
Характерис	тики в проводящем состоянии				
U _{тм} Импульсное напряжение в открытом состоянии, макс		В	2.85	T _j =25 °C; I _{TM} =1256 A	
$U_{\text{T(TO)}}$	пороговое напряжение, макс		1.673	т-т .	
r _T	Динамическое сопротивление в открытом состоянии, макс	мОм	0.891	$T_j = T_{j \text{ max}};$ 0.5 p $I_{TAV} < I_T < 1.5 p I_{TAV}$	
I _H	Ток удержания, макс		500	T _j =25 °C; U _D =12 В; управление разомкнуто	
Блокируюц	цие характеристики		-		
I _{DRM} , I _{RRM}	Повторяющийся импульсный обратный ток и повторяющийся импульсный ток в закрытом состоянии, макс	мА	100	$T_{j}=T_{j max}$; $U_{D}=U_{DRM}$; $U_{R}=U_{RRM}$	
(du _D /dt) _{crit}	Критическая скорость нарастания напряжения в закрытом состоянии ¹⁾ , мин	В/мкс	200, 320, 500, 1000, 1600, 2000, 2500	$T_{j} = T_{j max};$ $U_{D} = 0.67 \cdot U_{DRM};$ управление разомкнуто	

Характер	истики управления						
J _{GT}	Отпирающее постоянное напряжение управления, макс	В	3.00 2.50 1.50	Ii = Ii max	U _D =12 В; I _D =3 А; Постоянный ток управления		
GT	Отпирающий постоянный ток управления, макс	мА	500 300 150	T = T			
J_GD	Неотпирающее постоянное напряжение управления, мин	В	0.40	T _j =T _{j max} ; U _D =0.67 [·] U _{DRM} ; Постоянный ток управления			
GD	Неотпирающий постоянный ток управления, мин	мА	55.00			авления	
1 инамич	еские характеристики						
gd	Время задержки включения, макс	мкс	0.95	T _j =25 °C; U _D =6	500 В; I _{тм}	=I _{TAV} ;	
-gt	Время включения ²⁾ , макс	мкс	2.00, 2.50, 3.20, 4.00	di/dt=200 A/мкс; Импульс управления: I _G =I _{FGM} ; U _G =20 B; t _{GP} =50 мкс; di _G /dt=2 A/мкс			
	Doore Statement 3		10.0, 12.5, 16.0, 20.0	dt=-1		$T_j=T_{j \text{ max}}; I_{TM}=I_{TAV}; di_{R/}$ dt=-10 A/MKC;	
q	Время выключения ³⁾ , макс	МКС	12.5, 16.0, 20.0, 25.0			$U_R=100 B;$ $U_D=0.67U_{DRM}$	
Q _{rr}	Заряд обратного восстановления, макс	мкКл	100	— T _j =T _{j max} ; I _{TM} = I _{TAV} ; di _R / dt=-50 A/мкс; — U _R =100 B		,	
rr	Время обратного восстановления, макс	мкс	3.20				
rrM	Ток обратного восстановления, макс	А	80.0				
епловы	е характеристики			1			
thjc			0.0300		Двухстороннее охлаждение		
R _{thjc-A}	Тепловое сопротивление p-n переход-корпус, макс	°С/Вт	0.0660	Постоянный ток		Охлаждение со стороны анода	
R _{thjc-K}			0.0540		Охлаждение со стороны катода		
R_{thck}	Тепловое сопротивление корпус- охладитель, макс	°С/Вт	0.0060	Постоянный ток			
Vеханич	еские характеристики						
N	Масса, не более	г	180				
) _s	Длина пути тока утечки по поверхности	мм (дюйм)	7.86 (0.309)				
D _a	Длина пути тока утечки по воздуху	мм (дюйм)	6.10 (0.240)				

ГАБАРИТНЫЕ РАЗМЕРЫ

Тип корпуса: Т.С1 (РТ41)

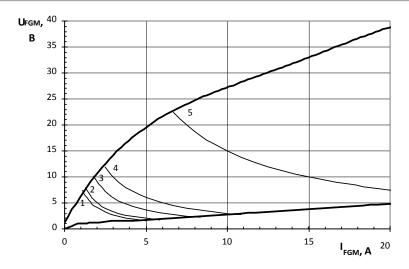

К – катод;

Все размеры в миллиметрах

А – анод;

К1 – вспомогательный катод;

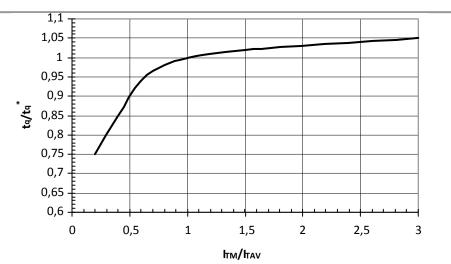
G – управляющий электрод;



Аналитическая функция предельной вольт — амперной характеристики:

$$V_{\scriptscriptstyle T} = A + B \cdot i_{\scriptscriptstyle T} + C \cdot \ln(i_{\scriptscriptstyle T} + 1) + D \cdot \sqrt{i_{\scriptscriptstyle T}}$$

	Коэффициенты для графика					
	$T_j = 25^{\circ}C$ $T_j = T_{j \text{ max}}$					
Α	1.53529589	1.00378110				
В	0.00130630	0.00082807				
С	0.24627785	0.12081582				
D	-0.05980358	-0.00275318				


Рис.1 – Предельная вольт-амперная характеристика.

Максимальные потери мощности цепи управления

	Коэф.	Длина	Энергия
Позиция	времени	импульса	импульса цепи
	вклвыкл.	управл., мс	управл., Вт
1	1	DC	8
2	2	10	10
3	20	1	18
4	40	0.5	30
5	200	0.1	150

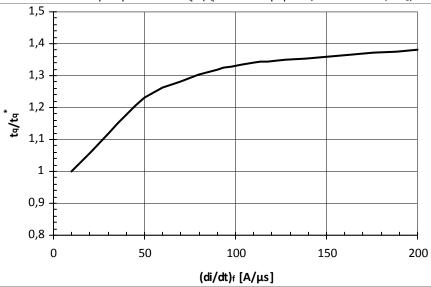

Рис.2 — Вольт-амперная характеристика цепи управления

Рис. 3 — Зависимость времени выключения t_q от амплитуды тока в открытом состоянии I_{TM}

Условия: $T_j = T_{j \text{ max}}$; $di_R/dt = 10 \text{ A/MKC}$; $U_R = 100 \text{ B}$; $du_D/dt = 50 \text{ B/MKC}$; $U_D = 0.67 \cdot U_{DRM}$

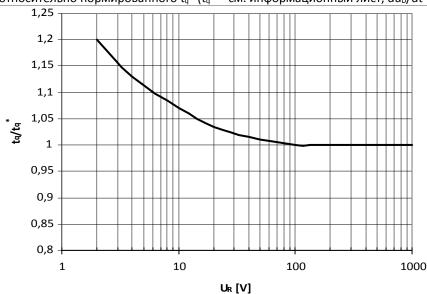

Типичное изменение t_q относительно нормированного $t_q^*(t_q^*-cm.$ информационный лист, $du_D/dt=50$ B/мкс)

Рис. 4 — Зависимость времени выключения t_q от скорости спада анодного тока di_R/dt

Условия: $T_j = T_{j \text{ max}}$; $I_{TM} = I_{TAV}$; $U_R = 100 \text{ B}$; $du_D/dt = 50 \text{ B/MKC}$; $U_D = 0.67 \cdot U_{DRM}$

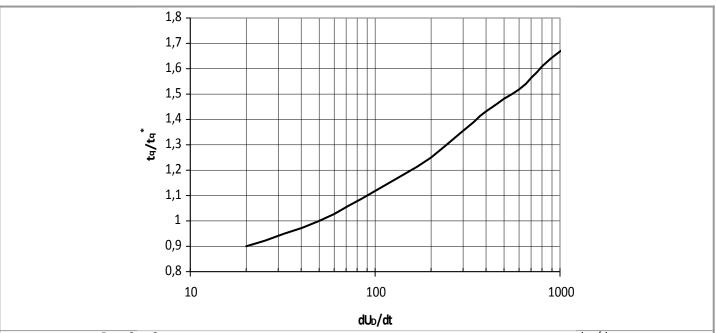

Типичное изменение t_q относительно нормированного $t_q^*(t_q^*-cm.$ информационный лист, $du_D/dt=50$ B/мкс)

Рис. 5 — Зависимость времени выключения t_{q} от обратного напряжения U_{R}

Условия: $T_j = T_{j \text{ max}}$; $I_{TM} = I_{TAV}$; $di_R/dt = 10 \text{ A/MKC}$; $du_D/dt = 50 \text{ B/MKC}$; $U_D = 0.67 \cdot U_{DRM}$

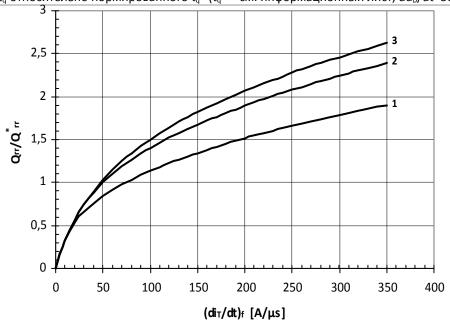
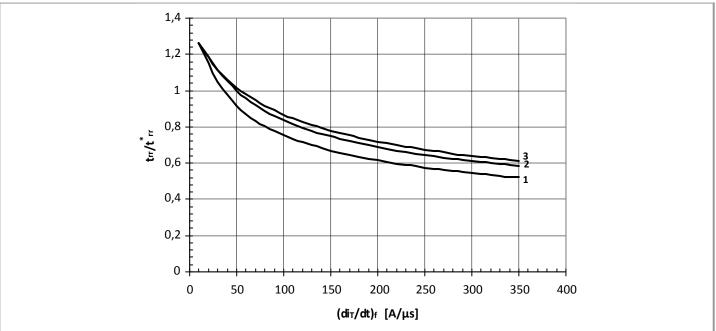

Типичное изменение t_q относительно нормированного $t_q^*(t_q^*-cm.$ информационный лист, $du_D/dt=50$ B/мкс)

Рис. 6 — Зависимость времени выключения t_q от скорости нарастания напряжения du_D/dt

Условия: $T_j = T_{j \text{ max}}$; $I_{TM} = I_{TAV}$; $di_R/dt = 10 \text{ A/MKC}$; $U_R = 100 \text{ B}$; $U_D = 0.67 \cdot U_{DRM}$

Типичное изменение t_q относительно нормированного t_q^* (t_q^* – см. информационный лист, du_D/dt =50 B/мкс)

Рис. 7 — Зависимость заряда обратного восстановления Q_{rr} , от скорости спада анодного тока di_R/dt


 $1 - I_{TM} = 0.5^{\cdot}I_{TAV}$

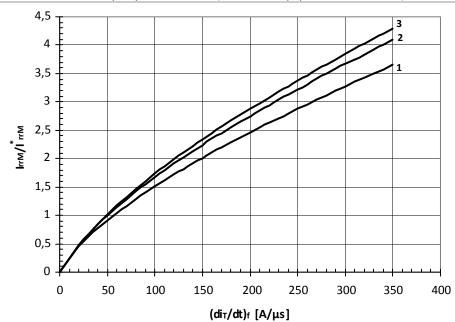
 $2-I_{\mathsf{TM}}=I_{\mathsf{TAV}},$

 $3 - I_{TM} = 1.5 I_{TAV}$

Условия: $T_j = T_{j \text{ max}}$; $U_R = 100 \text{ B}$

Типичное изменение Q_{rr} относительно нормированного Q_{rr}^* (Q_{rr}^* – см. информационный лист)

Рис. 8 — Зависимость времени обратного восстановления t_{rr} от скорости спада анодного тока di_R/dt


 $1 - I_{TM} = 0.5 I_{TAV}$

 $2-I_{\mathsf{TM}}=I_{\mathsf{TAV}},$

 $3 - I_{TM} = 1.5 I_{TAV}$

Условия: T_j=T_{j max}; U_R=100 В

Типичное изменение t_{rr} относительно нормированного t_{rr}^{*} (t_{rr}^{*} – см. информационный лист)

Рис. 9 — Максимальная зависимость тока обратного восстановления I_{rrm} от скорости спада

анодного тока di_R/dt

 $1 - I_{TM} = 0.5 I_{TAV}$

 $2-I_{\mathsf{TM}}=I_{\mathsf{TAV}},$

 $3 - I_{TM} = 1.5 I_{TAV}$

Условия: T_j=T_{j max}; U_R=100 В

Типичное изменение I_{rrM} относительно нормированного I_{rrM}^{*} (I_{rrM}^{*} – см. информационный лист)

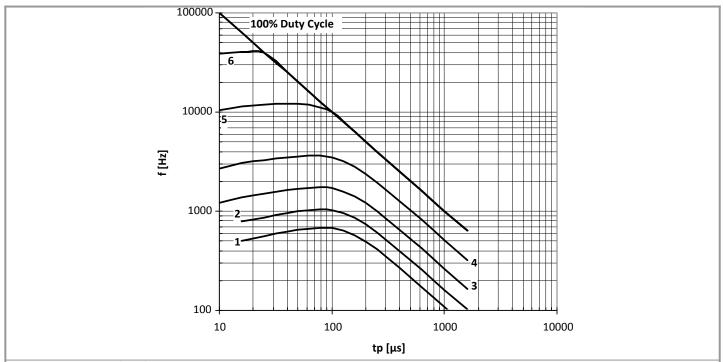


Рис. 10 — Зависимость частоты синусоидальных импульсов тока от длительности импульсов тока

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$

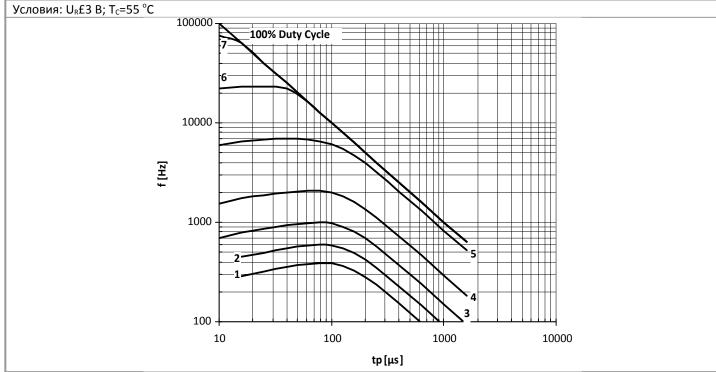


Рис. 11 — Зависимость частоты синусоидальных импульсов тока от длительности импульсов тока

 $1 - I_{TM} = 5000 A$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 250 A$

Условия: U_R £3 B; T_C =90 °C

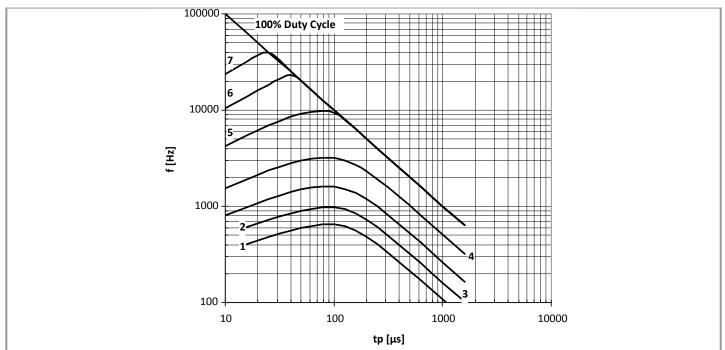


Рис. 12 — Зависимость частоты синусоидальных импульсов тока от длительности импульсов тока

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4-I_{\mathsf{TM}}=2000\;A$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 250 A$

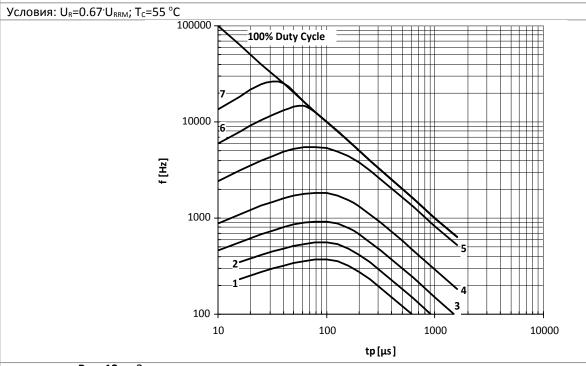


Рис. 13 — Зависимость частоты синусоидальных импульсов тока от длительности импульсов тока

 $1 - I_{TM} = 5000 A$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 250 A$

Условия: $U_R=0.67^{\circ}U_{RRM}$; $T_C=90\ ^{\circ}C$

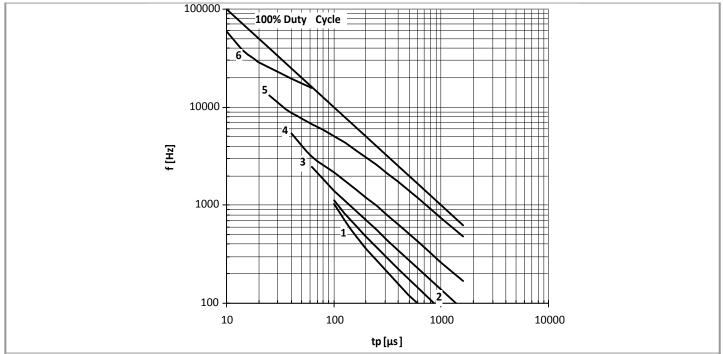


Рис. 14 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$

Условия: U_R £3 B; T_C =55 °C; di_F/dt = di_R/dt =100 A/мкс

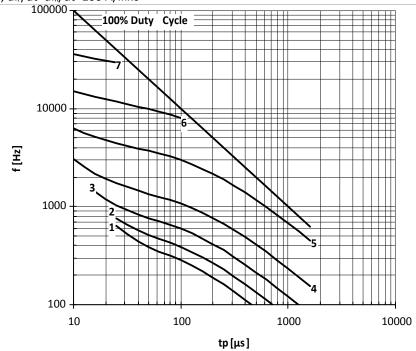


Рис. 15 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $1 - I_{TM} = 5000 A$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 300 \text{ A}$

Условия: U_R £3 B; T_C =55 °C; di_F/dt = di_R/dt =500 A/мкс

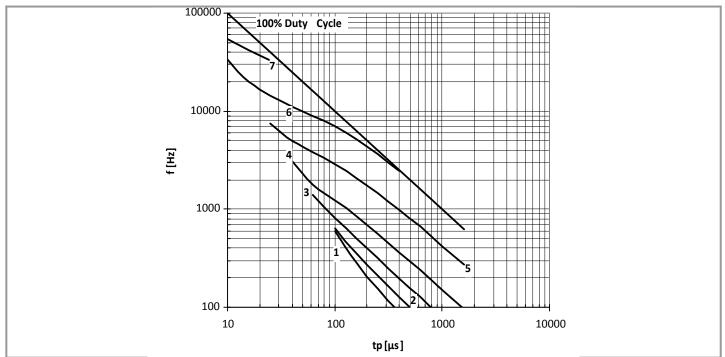


Рис. 16 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$ $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 250 A$

Условия: U_R£3 B; T_C=90 °C; di_F/dt=di_R/dt=100 A/мкс

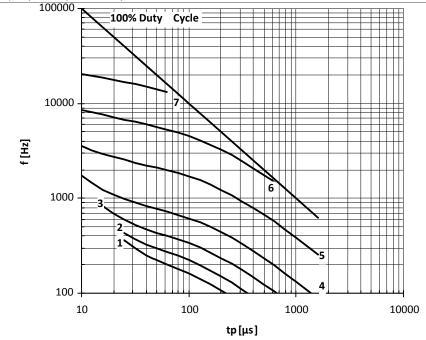


Рис. 17 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $1 - I_{TM} = 5000 A$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 250 A$

Условия: U_R £3 B; T_C =90 °C; di_F/dt = di_R/dt =500 A/мкс

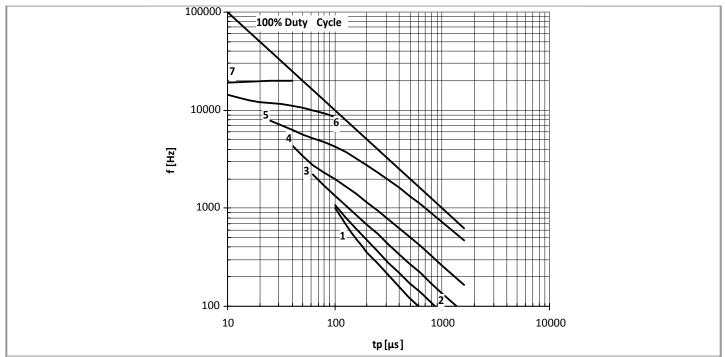


Рис. 18 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$ $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 250 A$

Условия: $U_R=0.67$ U_{RRM} ; $T_C=55$ $^{\circ}C$; $di_F/dt=di_R/dt=100$ A/мкс

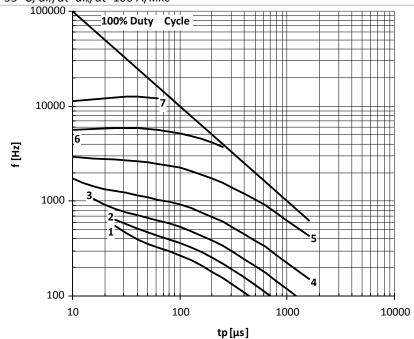


Рис. 19 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $1 - I_{TM} = 5000 A$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 250 \text{ A}$

Условия: $U_R=0.67^{\circ}U_{RRM}$; $T_C=55^{\circ}C$; $di_F/dt=di_R/dt=500$ A/мкс

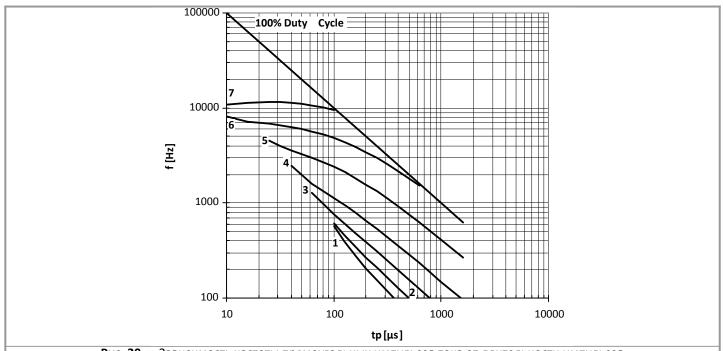


Рис. 20 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 250 A$

Условия: U_R =0.67 $\cdot U_{RRM}$; T_C =90 $\,^{\circ}$ C; di_F/dt = di_R/dt =100 A/мкс

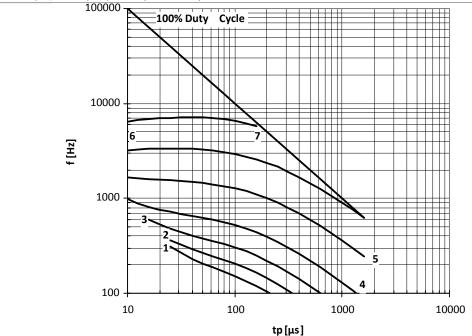
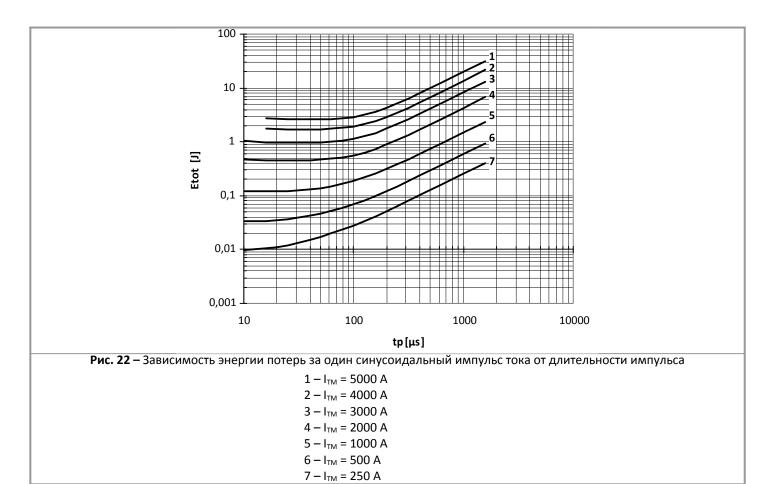


Рис. 21 — Зависимость частоты прямоугольных импульсов тока от длительности импульсов

 $1 - I_{TM} = 5000 A$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$


 $4 - I_{TM} = 2000 A$

5 – I_{TM} = 1000 A

 $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 250 \text{ A}$

Условия: $U_R=0.67^{\circ}U_{RRM}$; $T_C=90$ °C; $di_F/dt=di_R/dt=500$ A/мкс

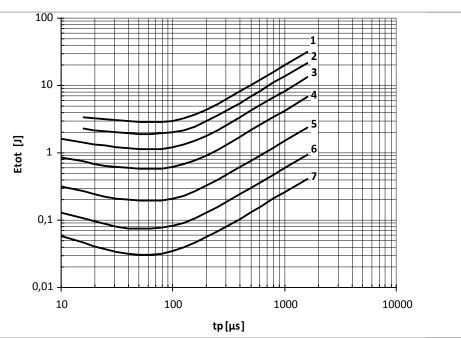


Рис. 23 – Зависимость энергии потерь за один синусоидальный импульс тока от длительности импульса

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4-I_{\mathsf{TM}}=2000\;\mathsf{A}$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 250 A$

Условия: $U_R = 0.67 \cdot U_{RRM}$

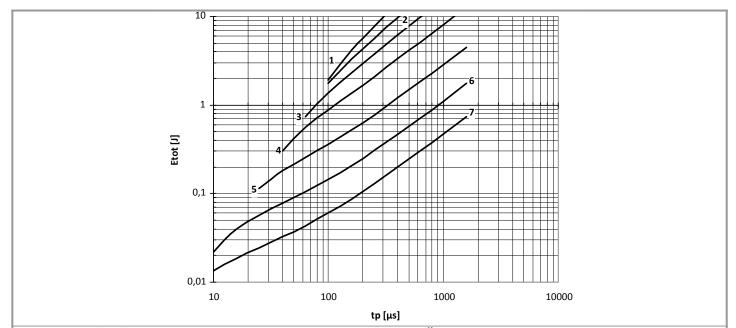


Рис. 24 – Зависимость энергии потерь за один синусоидальный импульс тока от длительности импульса

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$ $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 250 A$

Условия: U_R £3 B; $di_F/dt=di_R/dt=100$ A/мкс

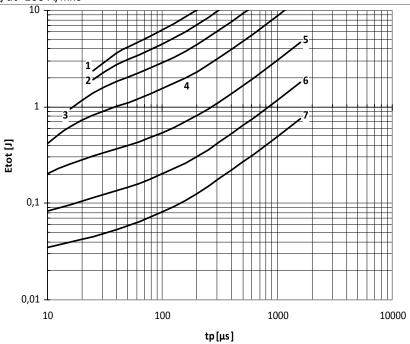


Рис. 25 — Зависимость энергии потерь за один синусоидальный импульс тока от длительности импульса

 $1 - I_{TM} = 5000 A$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 250 A$

Условия: U_R £3 B; $di_F/dt=di_R/dt=500$ A/мкс

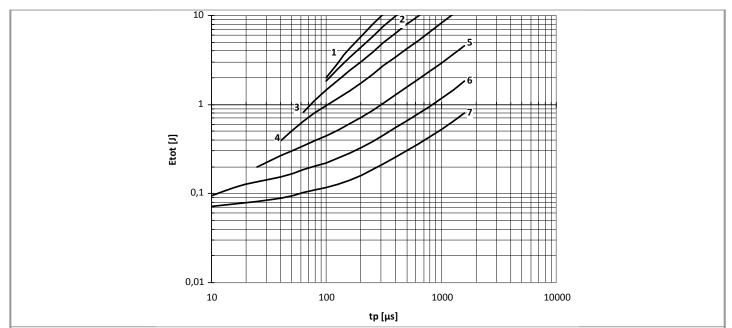


Рис. 26 – Зависимость энергии потерь за один синусоидальный импульс тока от длительности импульса

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$

 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$ $7 - I_{TM} = 250 A$

Условия: $U_R=0.67$ U_{RRM} ; $di_F/dt=di_R/dt=100$ A/мкс

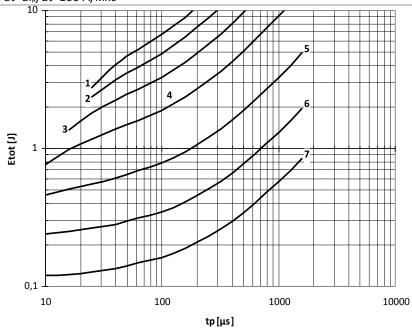
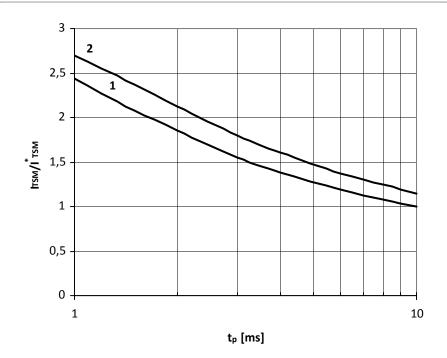


Рис. 27 – Зависимость энергии потерь за один синусоидальный импульс тока от длительности импульса

 $1 - I_{TM} = 5000 A$

 $2 - I_{TM} = 4000 A$

 $3 - I_{TM} = 3000 A$


 $4 - I_{TM} = 2000 A$

 $5 - I_{TM} = 1000 A$

 $6 - I_{TM} = 500 A$

 $7 - I_{TM} = 250 A$

Условия: $U_R=0.67$ U_{RRM} ; $di_F/dt=di_R/dt=500$ A/мкс

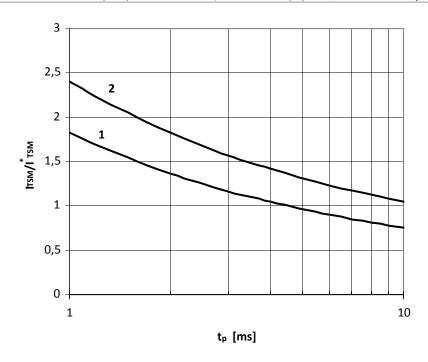


Рис. 28 – Зависимость ударного тока I_{TSM} от длительности импульса t_p для полусинусоидального импульса

$$1 - T_j = 125 \, ^{\circ}C$$

 $2 - T_j = 25 \, ^{\circ}C$

Условия: U_R =0 В — максимальное значение обратного напряжения, которое прикладывается сразу после ударного тока

Типичное изменение I_{TSM} относительно нормированного I_{TSM}^* (I_{TSM}^* – см. информационный лист, $T_j = T_{j \text{ max}}$)

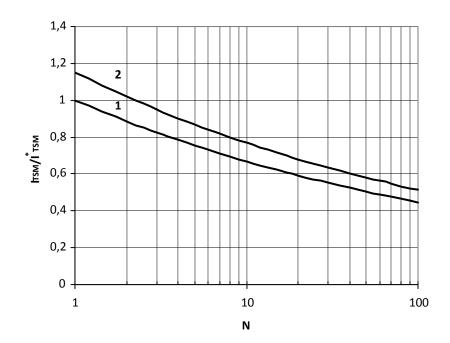
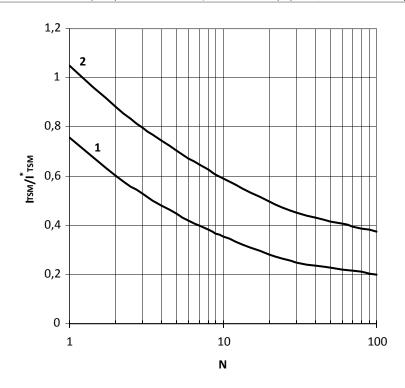


Рис. 29 – Зависимость ударного тока I_{TSM} от длительности импульса t_p для полусинусоидального импульса

 $2 - T_j = 25 \, ^{\circ}C$

Условия: $U_R = 0.8 \cdot U_{RRM}$ — максимальное значение обратного напряжения, которое прикладывается сразу после ударного тока

Типичное изменение I_{TSM} относительно нормированного I_{TSM}^* (I_{TSM}^* – см. информационный лист, T_j = $T_{j\,max}$)


Рис. 30 – Ударный ток I_{TSM} от количества полусинусоидальных импульсов тока длительностью 10 мс

$$1 - T_j = 125 \, ^{\circ}C$$

$$2 - T_j = 25 \, ^{\circ}C$$

Условия: U_R =0 В — максимальное значение обратного напряжения, которое прикладывается сразу после ударного тока

Типичное изменение I_{TSM} относительно нормированного I_{TSM}^* (I_{TSM}^* – см. информационный лист, T_j = $T_{j\;max}$)

Рис. 31 – Ударный ток I_{TSM} от количества полусинусоидальных импульсов тока длительностью 10 мс

$$1-T_j{=}125^{\circ}C$$

$$2 - T_j = 25$$
°C

Условия: U_R =0.8 U_{RRM} – максимальное значение обратного напряжения, которое прикладывается сразу после ударного тока

Типичное изменение I_{TSM} относительно нормированного I_{TSM}^* (I_{TSM}^* – см. информационный лист, $T_j = T_{j \text{ max}}$)