R 0 9 6 4 L S 1 2 E

- Power Thyristor

HIGH POWER THYRISTOR FOR INVERTER AND CHOPPER APPLICATIONS

Features:

- . All Diffused Structure
- . Interdigitated Amplifying Gate Configuration
- . Blocking capabilty up to 1200 volts
- . Guaranteed Maximum Turn-Off Time
- . High dV/dt Capability
- . Pressure Assembled Device

ELECTRICAL CHARACTERISTICS AND RATINGS

Blocking - Off State

Device Type	V _{RRM} (1)	V _{DRM} (1)	V _{RSM} (1)
R0964LS12E	1200	1200	1300

 V_{RRM} = Repetitive peak reverse voltage

 V_{DRM} = Repetitive peak off state voltage

 V_{RSM} = Non repetitive peak reverse voltage (2)

Repetitive peak reverse leakage and off state leakage	$I_{RRM/}I_{DRM}$	70 mA (3)
Critical rate of voltage rise (4)	dV/dt	200 V/μsec

Conducting - on state

Notes:

All ratings are specified for Tj=25 °C unless otherwise stated.

- (1) All voltage ratings are specified for an applied 50Hz/60zHz sinusoidal waveform over the temperature range -40 to +125 °C.
- (2) 10 msec. max. pulse width
- (3) Maximum value for Tj = 125 °C.
- (4) Minimum value for linear and exponential waveshape to 80% rated V_{DRM}. Gate open. Tj = 125 °C.
- (5) Non-repetitive value.
- (6) The value of di/dt is established in accordance with EIA/NIMA Standard RS-397, Section 5-2-2-6. The value defined would be in addition to that obtained from a snubber circuit, comprising a 0.2 μF capacitor and 20 ohms resistance in parallel with the thristor under test.

Parameter	Symbol	Min.	Max.	Typ.	Units	Conditions
Average value of on-state current	$I_{T(AV)}$			622		Sinewave,180° conduction,T _{sink} =85°C
Peak one cPSTCle surge (non repetitive) current	I_{TSM}		9400		A	10.0 msec (50Hz), sinusoidal wave- shape, 180° conduction, $T_j = 125^{\circ}C$
I square t	I^2t		442000		A^2s	10.0 msec
Latching current	I_{L}		1000		mA	$V_D = 24 \text{ V}; R_L = 12 \text{ ohms}$
Holding current	I_{H}		500		mA	$V_{D} = 24 \text{ V}; I = 2.5 \text{ A}$
Peak on-state voltage	V_{TM}		1.96		V	$I_{TM} = 1400 \text{ A}$; Duty cPSTCle $\leq 0.01\%$ $T_j = 125 ^{\circ}\text{C}$
Critical rate of rise of on-state current (5, 6)	di/dt		200		A/μs	Switching from V _{DRM} ≤ 1000 V, non-repetitive
Critical rate of rise of on-state current (6)	di/dt		100		A/μs	Switching from V _{DRM} ≤ 1000 V

ELECTRICAL CHARACTERISTICS AND RATINGS

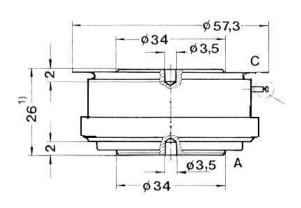
R0964LS12E - Power Thyristor

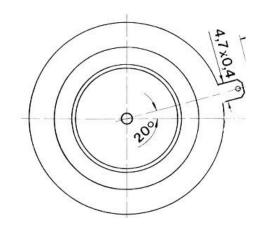
Gating

Parameter	Symbol	Min.	Max.	Тур.	Units	Conditions
Peak gate power dissipation	P_{GM}		200		W	$t_p = 40 \text{ us}$
Average gate power dissipation	P _{G(AV)}		5		W	
Peak gate current	I_{GM}		10		A	
Gate current required to trigger all units	I_{GT}		400 200 150		mA mA mA	$V_D = 6 \text{ V}; R_L = 3 \text{ ohms}; T_j = -40 \text{ °C}$ $V_D = 6 \text{ V}; R_L = 3 \text{ ohms}; T_j = +25 \text{ °C}$ $V_D = 6 \text{ V}; R_L = 3 \text{ ohms}; T_i = +125 \text{ °C}$
Gate voltage required to trigger all units	V _{GT}	0.25	5 3		V V V	$V_D = 6 \text{ V; } R_L = 3 \text{ ohms; } T_j = -40 \text{ °C}$ $V_D = 6 \text{ V; } R_L = 3 \text{ ohms; } T_j = 0.125 \text{ °C}$ $V_D = \text{Rated V}_{DRM}; R_L = 1000 \text{ ohms; } T_i = +125 \text{ °C}$
Peak negative voltage	V_{GRM}		5		V	

Dynamic

Parameter	Symbol	Min.	Max.	Тур.	Units	Conditions
Delay time	t_d		1.5	0.5	μs	$I_{TM} = 500 \text{ A}; V_D = \text{Rated } V_{DRM}$
						Gate pulse: $V_G = 20 \text{ V}$; $R_G = 20 \text{ ohms}$;
						$t_r = 0.1 \ \mu s; \ t_p = 20 \ \mu s$
Turn-off time (with $V_R = -50 \text{ V}$)	t_q	20	30		μs	$I_{TM} = 1000 \text{ A}$; $di/dt = 60 \text{ A/}\mu\text{s}$;
						$V_R \ge -50 \text{ V}$; Re-applied dV/dt = 200
						$V/\mu s$ linear to 80% V_{DRM} ; $V_G = 0$;
						$T_i = 125$ °C; Duty cPSTCle $\ge 0.01\%$
Reverse recovery charge	Q _{rr}				μC	$I_{TM} = 1000 \text{ A}$; $di/dt = 60 \text{ A/}\mu\text{s}$;
			*180			$V_R \ge -50 \text{ V}$


^{*} For guaranteed max. value, contact factory.


THERMAL AND MECHANICAL CHARACTERISTICS AND RATINGS

Parameter	Symbol	Min.	Max.	Тур.	Units	Conditions
Operating temperature	T_{j}	-40	+125		°C	
Storage temperature	T_{stg}	-40	+150		°C	
Thermal resistance - junction to	R _{e (j-c)}		0.040		°C/W	Double sided cooled
case	0 -7		0.080			Single sided cooled
Thermal resistance - case to sink	R _{e (c-s)}		0.015		°C/W	Double sided cooled *
	, ,		0.030			Single sided cooled *
Mounting force	P	3000	3500		lb.	
		13.3	15.5		kN	
Weight	W					
				270	g	

^{*} Mounting surfaces smooth, flat and greased

Note: for case outline and dimensions, see case outline drawing in page 4 of this Technical Data

