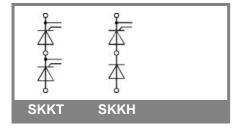
SKKT 132, SKKH 132

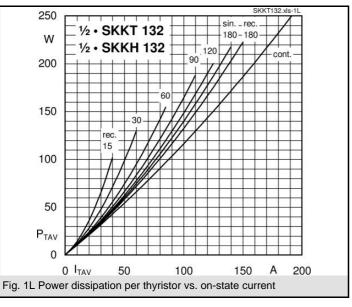
SEMIPACK[®] 2

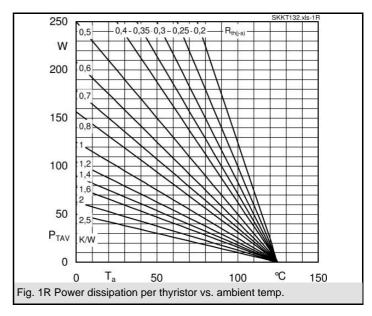
Thyristor / Diode Modules

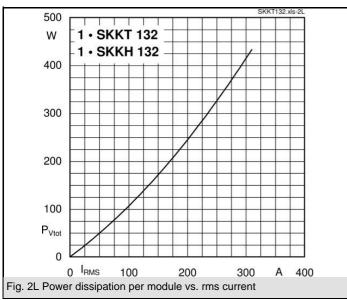
SKKT 132 SKKH 132

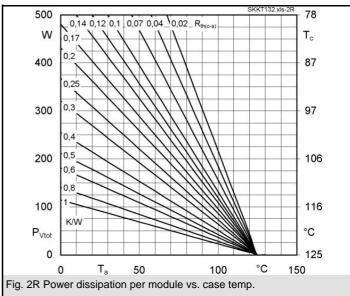
Features

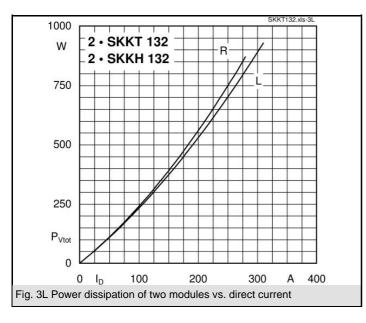

- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- Hard soldered joints for high reliability
- UL recognized, file no. E 63532

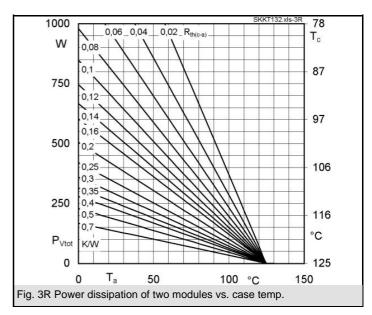

Typical Applications*

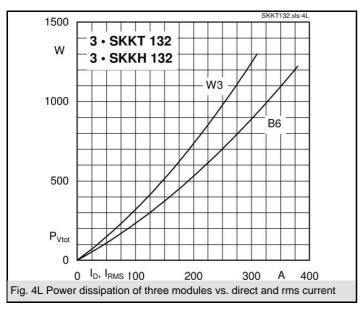

- DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions

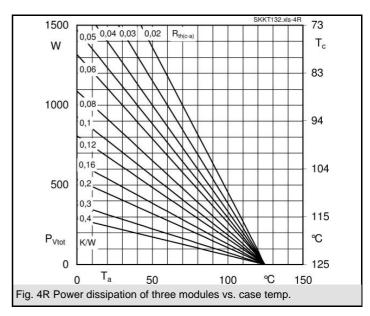

V_{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 220 A (maximum value for continuous operation)		
V	V	I _{TAV} = 130 A (sin. 180; T _c = 87 °C)		
900	800	SKKT 132/08E	SKKH 132/08E	
1300	1200	SKKT 132/12E	SKKH 132/12E	
1500	1400	SKKT 132/14E	SKKH 132/14E	
1700	1600	SKKT 132/16E	SKKH 132/16E	
1900	1800	SKKT 132/18E	SKKH 132/18E	

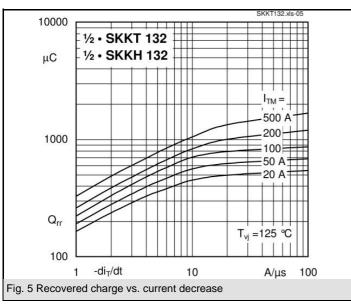

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	137 (96)	Α
I_D	P3/180; T _a = 45 °C; B2 / B6	77 / 100	Α
	P3/180F; T _a = 35 °C; B2 / B6	170 /200	Α
I _{RMS}	P3/180F; T _a = 35 °C; W1 / W3	240 / 3 * 163	Α
I _{TSM}	T _{vj} = 25 °C; 10 ms	4700	Α
	T _{vj} = 125 °C; 10 ms	4000	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	110000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	80000	A²s
V_T	T _{vj} = 25 °C; I _T = 500 A	max. 1,8	V
$V_{T(TO)}$	T _{vj} = 125 °C	max. 1	V
r_T	T _{vj} = 125 °C	max. 1,6	mΩ
I_{DD} ; I_{RD}	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 40	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 200	A/µs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 1000	V/µs
t_q	$T_{vj} = 125 ^{\circ}\text{C}$	50 150	μs
I _H	T_{vj} = 25 °C; typ. / max.	150 / 400	mA
I_{L}	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	300 / 1000	mA
V _{GT}	T_{vj} = 25 °C; d.c.	min. 2	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T_{vj} = 125 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,18 / 0,09	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,19 / 0,095	K/W
$R_{th(j-c)}$	rec. 120; per thyristor / per module	0,21 / 0,105	K/W
$R_{th(c-s)}$	per thyristor / per module	0,1 / 0,05	K/W
T_{vj}		- 40 + 125	°C
T _{stg}		- 40 + 125	°C
V_{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M _s	to heatsink	5 ± 15 % ¹⁾	Nm
M_t	to terminal	5 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	165	g
Case	SKKT	A 21	1
	SKKH	A 22	

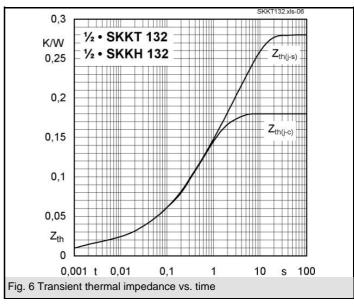


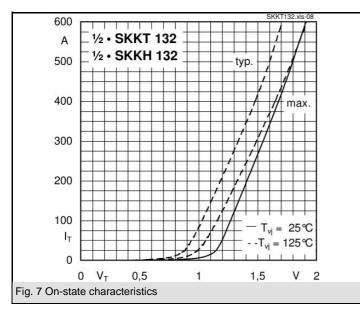


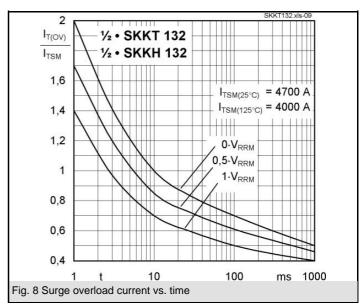


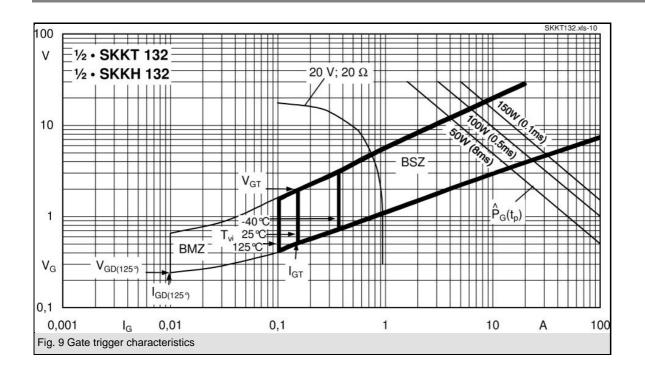


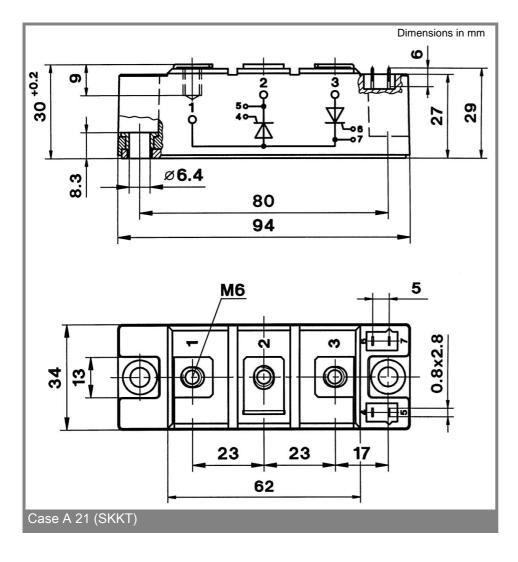


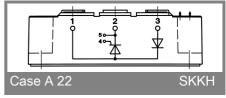



SKKT 132, SKKH 132









^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON

SKKT 132, SKKH 132

products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

5 16-04-2007 GIL © by SEMIKRON